

## SADAR®-E

## REAL-TIME SUBSURFACE ACTIVITY DETECTION

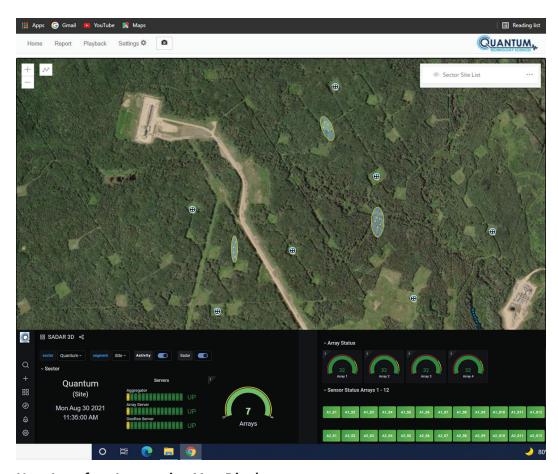


SADAR®-E is an event-driven, seismic-acoustic monitoring technology solution that detects, classifies, locates, and tracks subsurface events of Interest, automatically and in real-time. SADAR delivers greater range, accuracy, and minimal uncertainty than ever before.

SADAR-E is a passive seismic acoustic system that consistently listens to a defined volume of earth for seismic sources of interest. SADAR-E uses arrays of seismic-acoustic sensors for three-dimensional detection of activities associated with microseismicity, hydraulic fracturing, groundwater storage, and carbon capture and storage as well as hydrogen storage.

## THE SADAR® ANALYTIC SEQUENCE - Signal and Information Processing

SADAR's coherent array processing offers several distinctive advantages. We enhance the already impressive performance of SADAR by deploying a network of tuned SADAR arrays. A SADAR Network adheres to a traditional event processing sequence of detect, associate, locate, and identify.

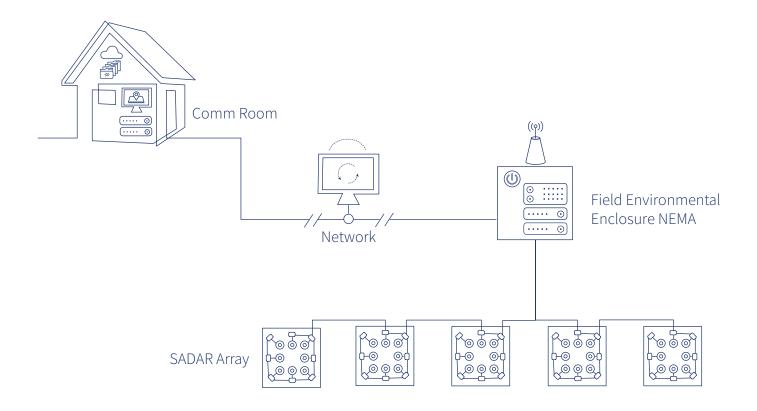

With the additional power of spatial analytics, SADAR operates simultaneously in both time and frequency domains, while spatially filtering the persistent wavefield. This improves every aspect of analytic performance by exploiting the resulting enhanced signal-to-noise ratio (SNR) and three-dimensional direction-finding to the event.

# System Components

## **GRAPHICAL USER INTERFACE**

The User Interface allows remote access to the system from a computer application or mobile device. It can graphically monitor the system as a whole or examine activities of individual SADAR-E arrays, as well as play back historical alerts. The user interface software provides an interactive map, a system state of health summary, and a message viewer.

The system automatically and immediately reports all events and, at pre-programmed intervals, state-of-health (SOH) messages to the monitoring device and record them internally as well. The monitoring device uses these reports to continuously update the user interface with the most current information.




#### **User Interface Interactive Map Displays**

- Array(s) location
- State-of-health status of individual SADAR arrays
- Detection, classification, and localization alerts

# System Components

## **CONFIGURATION DIAGRAM**



#### Each SADAR-E system contains one or more of the following components:

- Ground Sensors
- Sensor Power Supply
- Mux/Demux and Line Conditioning Units
- Data Bunching and Conditioning Units
- Communication Devices
- Array Servers
- Aggregator Servers
- Timing Servers
- Data Storage Devices



# SADAR-E **SPECIFICATIONS**

### GeoRes S8 (Server)

| 19in Rack-Mount Chassis                | 4U                                         |
|----------------------------------------|--------------------------------------------|
| SADAR-E Array Line Support per Chassis | 8                                          |
| SADAR-E Arrays per Line                | 7                                          |
| Operating Temperature                  | -20°C to 60°C                              |
| Input Voltage/Power                    | 100-260 VAC, 10W                           |
| Array Power Supplied via 450-05290-xx  | Passthrough                                |
| Dimensions                             | 19 in (W) x 13.5 (D) x 7 in (H)            |
|                                        | 48.26 cm (W) x 34.29 cm (D) x 17.78 cm (H) |
| Weight                                 | 11 lbs/5 kg                                |

#### **GS-ONE Geophone**

| Response Frequency       | 10 Hz, 3.5%                      |
|--------------------------|----------------------------------|
| Spurious Frequency       | >240 Hz                          |
| Distortion from Vertical | <0.12% @ 12 Hz with 0.7 in/s p-p |
| Distortion at Vertical   | 0.05% typical                    |
| Sensitivity              | 2.00 V/in/s (78.7 V/m/s) typical |
| Damping                  | 70% +/- 10%                      |
| DC Resistance            | 1800 ohms +/- 5%                 |

### **Digitizer**

| Digitization                    | 24-Bit Delta – Sigma                |
|---------------------------------|-------------------------------------|
| Sample Rate                     | 0.5, 1, 2, 4 ms                     |
| Pre-amplifier Gains             | 0, 6, 12, 18, 24, 30, 36 dB         |
| Maximum Input Signal for Sensor | 26 mm/sec                           |
| Equivalent Input Noise          | @ 2 ms sample rate 1.77 μmm/sec rms |
| Gain Accuracy                   | Better than 1%                      |
| Anti-alias Filter               | 83% Nyquist                         |
| Instantaneous Dynamic Range     | 124 dB @ 2 ms sample interval       |
| Crossfeed Isolation             | >90 dB                              |
| THD                             | <0.2%                               |
| System Timing Accuracy          | GPS Disciplined Clock               |

7007 Pinemont Drive • Houston, Texas 77040 USA www.geospace.com • T: 713-986-4444 • F: 713-986-4445